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Iterative Solution of Weighted Linear Least
Squares Problems

Doina Carp, Constantin Popa, Tobias Preclik and Ulrich Rüde

Abstract

In this report we show that the iterated regularization scheme due
to Riley and Golub, sometimes also called the iterated Tikhonov regu-
larization, can be generalized to damped least squares problems where
the weights matrix D is not necessarily the identity but a general sym-
metric and positive definite matrix. We show that the iterative scheme
approaches the same point as the unique solutions of the regularized
problem, when the regularization parameter goes to 0. Furthermore
this point can be characterized as the solution of a weighted minimum
Euclidean norm problem. Finally several numerical experiments were
performed in the field of rigid multibody dynamics supporting the the-
oretical claims.

1 Introduction

A timestep problem in rigid multibody dynamics can be formulated with the
help of the Jacobian J : n×m, the mass matrix M : m×m and the impulses
x ∈ IRn as

JM−1JTx− Jc = 0, (1)

where the right hand side c ∈ IRm comes from the rigid body system structural
characteristics (see for details [8]). Moreover, as shown in [6], [7], in the case
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of bilateral joints, the problem (1) can be regularized by relaxing the rigidity
assumptions as

JM−1JTx− Jc = −sDx, (2)

with s > 0 and D : n × n symmetric and positive definite (SPD, for short).
Because the mass matrix M is also SPD, we can write (2) as

(JM−
1
2 )(JM−

1
2 )Tx− (JM−

1
2 )(M

1
2 c) = −sDx ⇔

ATAx−AT b = −sDx, (3)

with
A = (JM−

1
2 )T : m× n, b = M

1
2 c ∈ IRm. (4)

Therefore, we will refer to the problem (3)-(4), and denote by x∗(s) its unique
solution (because the matrix ATA + sD is SPD). The paper is organized as
follows. In section 2 we observe that the problem (3) is equivalent with the
Tikhonov-type regularization of

ATAx = AT b ⇔ ‖ Ax− b ‖2= min! (5)

namely
‖ Ax− b ‖2 +s ‖ D 1

2x ‖2= min! (6)

Moreover, if x∗D is the (unique) minimal D-norm solution of (5), i.e.

‖ x∗D ‖D ≤ ‖ x ‖D, ∀x ∈ LSS(A; b), (7)

we show that
lim
s→0

x∗(s) = x∗D (8)

(we denoted by LSS(A; b) the set of least squares solutions of the problem
(5)). In section 3 of the paper we propose the (implicit) iterative method

x0 ∈ IRn, (ATA+ sD)xk+1 = sDxk +AT b, k ≥ 0, (9)

show that it generates a sequence of approximations (xk)k≥0 which converges
linearly to x∗D, and provide a step error reduction factor in terms of a gener-

alized singular value decomposition of the pair (A,D
1
2 ). A numerical experi-

ments section together with some conclusions will end the paper.
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2 Analysis of the Tikhonov-type regularization

We will start this section by first observing that the regularized problem (3)
is equivalent with the (global) minimization one

H(x∗(s)) = min
x∈IRn

H(x), (10)

with H : IRn −→ IR be defined by

H(x) = 〈ATAx, x〉 − 2〈AT b, x〉+ s〈Dx, x〉. (11)

Now, by defining
G(x) = H(x)+ ‖ b ‖2, (12)

we get that (10) is equivalent with

G(x∗(s)) = min
x∈IRn

G(x), (13)

which can be written as a Tikhonov-type regularization as

G(x∗(s)) = min
x∈IRn

‖
[
A√
sD

1
2

]
x−

[
b
0

]
‖2 . (14)

It is well known that, one of the most useful and famous matrix decompositions
is the Singular Value Decomposition (SVD, for short). It says that for any
m × n matrix A of rank r, there exists orthogonal matrices U : m ×m and
V : n× n such that

A = UΣV T , with Σ = diag(σ1, . . . , σr, 0, . . . , 0). (15)

The positive numbers σ1, . . . , σr are uniquelly determined and called the
(nonzero) singular values of A; their squares are the nonzero eigenvalues
of the matrix ATA. According to the paper [11]:Together, E. Beltrami (1873)
and C. Jordan (1874) are the progenitors of the singular value decomposition,
but essential developments were obtained also by J.J. Sylvester, E. Schmidt
and H. Weyl. Although this powerful decomposition provided many important
applications in matrix theory, another crucial step was made by the construc-
tion of the Generalized version of SVD (GSVD, for short). The first version of
the GSVD was given in [3], in the particular case m ≥ n, whereas its general
version, for any m and n was given in [4]. It refers to a pair of arbitrary
matrices (A,B), A : m × n, B : q × n, but we will briefly present in what
follows the (particular) case when B is n × n and invertible (see for details
[6]). In this case there exist orthogonal matrices UA : m×m, UB : n× n and
an invertible one X : n× n such that

UTAAX = DA = diag(α1, . . . , αr, 0, . . . , 0),
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UTBBX = DB = diag(β1, . . . , βn), (16)

with DA : m× n, DB : n× n,

1 > α1 ≥ · · · ≥ αr > 0, 0 < β1 ≤ · · · ≤ βr < βr+1 = · · · = βn = 1,

α2
i + β2

i = 1, i = 1, . . . , r, (17)

and the ratios
αi
βi

> 0, i = 1, . . . , r, (18)

are the nonzero singular values of the matrix AB−1.

We will now use a GSVD of the matrix

[
A

D
1
2

]
as in (16)-(17) (for B = D

1
2 )

UTAAX = diag(α1, . . . , αr, 0, . . . , 0) = DA,

UTBD
1
2X = diag(β1, . . . , βn) = DB . (19)

Then, by introducing (19) in (14) and using the orthogonality of U and V and
the invertibility of X we successively obtain

min
x∈IRn

‖
[
A√
sD

1
2

]
x−

[
b
0

]
‖2=

min
x∈IRn

‖
[
UTA 0
0 UTB

]([
A√
sD

1
2

]
X(X−1x)−

[
b
0

])
‖2=

min
z∈IRn

‖
[
DA√
sDB

]
z −

[
w
0

]
‖2=

r∑
i=1

(αizi − wi)2 +

m∑
i=r+1

w2
i +

n∑
i=1

sβ2
i z

2
i = E(z), (20)

where z = (z1, . . . , zn)T = X−1x, w = (w1, . . . , wn)T = UTA b. The values of zi
which ensure the minimal value of the function E(z) are obtained by solving
the system ∂E

∂zi
(z) = 0, i = 1, . . . , n. These are

zi =
wiαi

α2
i + sβ2

i

, i = 1, . . . , r, zi = 0, i = r + 1, . . . , n. (21)

Thus, the unique solution x∗(s) of the problem (13) will be given by

x∗(s) = Xz =

n∑
i=1

ziX
i =

r∑
i=1

wiαi
α2
i + sβ2

i

Xi. (22)
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Now let us consider the weighted LSS problem

‖ D 1
2x∗D ‖2= min

x∈IRn,s.t.‖Ax−b‖=min!
‖ D 1

2x ‖2, (23)

with the unique solution x∗D ∈ IRn. That is, we must find x∗D ∈ LSS(A; b) for

which ‖ D 1
2x∗D ‖ is minimal. By using again the GSVD (19) we obtain

‖ Ax− b ‖2=

r∑
i=1

(αizi − wi)2 +

n∑
i=r+1

w2
i

from which we get

LSS(A; b) = {x∗ = Xz∗, z∗i =
wi
αi
, i = 1, . . . , r; z∗i ∈ IR, i = r+1, . . . , n}. (24)

Now, UTBD
1
2X = DB , i.e. D

1
2 = UBDBX

−1, thus, for an x∗ ∈ LSS(A; b) we
obtain

‖ D 1
2x∗ ‖2=‖ DBz

∗ ‖2=

r∑
i=1

(
βiwi
αi

)2 +

n∑
i=r+1

(βiz
∗
i )2, (25)

which has its minimal value for z∗i = 0, i = r + 1, . . . , n and gives us

x∗D = Xz∗ =

r∑
i=1

wi
αi
Xi. (26)

Then, from (22) and (26) the desired equality results, i.e.

lim
s→0

x(s) = x∗D. (27)

3 The weighted iteration

In this section we will analyse the convergence of the iteration (9) for a general
SPD matrix D. For D = I this was done in [10] in the case and ATA invertible,
and in [1] for a general m × n matrix A. In our considerations we shall use

the proof ideas in [1], but with respect to a GSVD of the pair (A,D
1
2 ), where

D
1
2 is the square root of D. Firstly we shall observe that, if we write (9) as

x0 ∈ IRn, xk+1 = Gxk + c (28)

where
G = s(ATA+ sD)−1D, c = (ATA+ sD)−1AT b (29)



Iterative Solution of Weighted Linear Least Squares Problems 58

then, for x0 = 0 we obtain

xk = (Gk−1 +Gk−2 + · · ·+ I)c (30)

According to the GSVD decomposition (19) it results

G = sX(DT
ADA + sD2

B)−1D2
BX

−1, c = X(DT
ADA + sD2

B)−1DT
Aw,w = UTA b,

(31)
thus

Gj = sjX(DT
ADA + sD2

B)−j(D2
B)jX−1, j = 0, 1, . . . , k − 1 (32)

The n× n matrices DT
ADA and D2

B are diagonal, of the form (see (19))

DT
ADA =



α2
1 · · · 0

. . .
...

α2
r

0
...

. . .

0 · · · 0


, D2

B =

β
2
1 · · · 0
...

. . .
...

0 · · · β2
n

 . (33)

From (31)-(33) we then obtain

sj(DT
ADA + sD2

B)−j(D2
B)j =



(
sβ2

1

α2
1+sβ

2
1

)j
· · · 0

. . .
...(

sβ2
r

α2
r+sβ

2
r

)j
1

...
. . .

0 · · · 1


(34)

and

(DT
ADA + sD2

B)−1DT
Aw =



w1α1

α2
1+sβ

2
1

...
wrαr

α2
r+sβ

2
r

0
...
0


. (35)

We observe that

0 <
sβ2
i

α2
i + sβ2

i

< 1 ∀i = 1, . . . , r. (36)
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By introducing all these formulas in (30) we get (by also using (36))

xk = X



∑k−1
j=0

(
sβ2

1

α2
1+sβ

2
1

)j
· w1α1

α2
1+sβ

2
1

...∑k−1
j=0

(
sβ2

r

α2
r+sβ

2
r

)j
· wrαr

α2
r+sβ

2
r

0
...
0


= X



(
1−

(
sβ2

1

α2
1+sβ

2
1

)k)
w1

α1

...(
1−

(
sβ2

r

α2
r+sβ

2
r

)k)
wr

αr

0
...
0


=

r∑
i=1

(
1−

(
sβ2
i

α2
i + sβ2

i

)k)
wi
αi
·Xi.

(37)

Using again (36), (37) and (26) we obtain

lim
k→∞

xk = x∗D, (38)

i.e. the sequence
{
xk
}
k≥0 generated with the iteration (9) with x0 = 0

and s > 0 fixed arbitrary, converges to the unique solution of the weighted
least squares problem (23). Moreover, from (26) and (37) it results x∗D, x

k ∈
span{X1, . . . , Xr}, thus for the error vector ek = xk − x∗D we have

ek =

r∑
i=1

ekiX
i ∈ span{X1, . . . , Xr}, eki ∈ IR. (39)

If we define fk = X−1ek, from (39) it results

fk =

r∑
i=1

ekiX
−1Xi = (ek1 , . . . , e

k
r , 0, . . . , 0)T ∈ IRn. (40)

Now, because ek = Gek−1 (see (28) and the relation x∗D = Gx∗D + c), by using
(31), (34) (for j = 1) and (40) we get

fk = X−1ek = X−1Gek−1 = sX−1X(DT
ADA + sD2

B)−1D2
BX

−1ek−1

=



sβ2
1

α2
1+sβ

2
1

· · · 0

. . .
...

sβ2
r

α2
r+sβ

2
r

1
...

. . .

0 · · · 1





ek−11
...

ek−1r

0
...
0


.

(41)
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By taking the Euclidean norm of (41) we obtain

‖fk‖2 =

r∑
i=1

(
sβ2
i

α2
i + sβ2

i

)2 (
ek−1i

)2 ≤ max
1≤i≤r

(
sβ2
i

α2
i + sβ2

i

)2

· ‖fk−1‖2

=

max
1≤i≤r

s

s+
(
αi

βi

)2


2

‖fk−1‖2 ≤ s2(
s+ min1≤i≤r

(
αi

βi

)2)2 ‖f
k−1‖2

,

(42)

which gives us information about the step reduction factor (with respect to
the Euclidean norm) of the weighted errors fk from (40). If we consider the
relations (17) we obtain that

µ = min
1≤i≤r

(
αi
βi

)2

=
α2
r

β2
r

=
1− β2

r

β2
r

=
α2
r

1− α2
r

(43)

Note. From (42)-(43) we obtain

‖fk‖ ≤ s

s+ µ
‖fk−1‖ (44)

Thus, if s ≈ µ we obtain a step error reduction factor ≈ 1
2 . If s� µ, we have

s
s+µ ≈ 1 which is not a good error reduction factor per iteration. If s � µ it

will determine the increase of the condition number of the matrix ATA+ sD
in (9), which makes the computation of xk+1 difficult.

4 Numerical experiments

The numerical experiments of this section are performed with the weighted it-
eration scheme described (28) - (29). The test problems are time step problems
arising in rigid multibody dynamics. The test scenarios are described in detail
in [5]. The test cases contain only bilateral constraints so that the resulting
systems are least squares problems of the form (5). For each test case the it-
eration was executed for an unweighted regularization where D = I and for a
weighted regularization where D was chosen randomly. The weights were com-
puted by generating a standard normally-distributed random variable, taking
the absolute value and adding 1, such that all weights were greater equal and
close to 1. The weighted and the unweighted tests were executed with three
different values for the parameter s. The parameter was chosen such that an
error reduction at least of a factor f ∈ {0.1, 0.5, 0.9} was achieved. From (44)
we can conclude that s = f

1−f µ, where µ is the smallest nonzero singular value

of AD−1 squared.
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4.1 Test Case: Well

In the well test case A ∈ IR1200×6240 has full row-rank (rankA = 1200) and
thus ATA ∈ IR6240×6240 is rank deficient (rankATA = rankA = 1200). A
singular value decomposition of A reveals that the smallest nonzero singular
value σr of A is approximately 0.0365. Thus s was 1.4771 · 10−4 for f = 0.1,
0.0013 for f = 0.5 and 0.0120 for f = 0.9 in the unweighted case where D = I.
For the weighted case σr ≈ 0.0222 and s is thus 5.4840 ·10−5, 4.9356 ·10−4 and
0.0044 for f equal to 0.1, 0.5 and 0.9 respectively. The error graphs in Figure
1 plot the Euclidean norm of the difference between the current iterate and
the minimum norm solution computed by Matlab. The weighted minimum
norm solution can be restated as an unweighted minimum norm solution of a
modified system:

x∗D = argmin{xTDx s.t. ATAx = AT b} =

D−
1
2 argmin{yT y s.t. ATAD−

1
2 y = AT b}. (45)

Hence the weighted minimum norm solution x∗D can be computed by applying

the Moore-Penrose pseudo-inverse of ATAD−
1
2 to the right-hand side AT b.

x∗D = (ATAD−
1
2 )+AT b (46)

Thus the reference solution was obtained by using the pinv command or in
the case where D = I by computing V Σ+UT b which is evidently the same.
This can be verified by inserting the singular value decomposition of A into
(46). The SVD was computed by the standard svd command in Matlab. The

unweighted minimum norm solution obtained had the norm
√
xTx = 10.9296

and the weighted minimum norm solution obtained had the norm
√
xTDx =

14.0871. Though the residual does not make any statements on whether the
iterate approaches the minimum norm solution (as opposed to an arbitrary
solution) it seems to be a good indicator.

4.2 Test Case: Mobile

Here the system matrix A ∈ IR1013×570 has full column-rank (rankA = 570)
and thus ATA has full rank. The smallest singular value σr of A was deter-
mined to be approximately 0.1612. Thus the parameter s was chosen to be
0.0029, 0.0260 and 0.2338 for f equal to 0.1, 0.5 and 0.9 respectively. For the
weighted case σr ≈ 0.1010 of AD−1 and s therefore 0.0011, 0.0102 and 0.0917.
The (weighted) norms of the solutions were 0.1549 in the unweighted case and
0.1936 in the weighted case. Figure 2 shows residual and error graphs for the
tests.
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(a) The residual graphs with
unweighted regularization.
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(b) The error graphs with un-
weighted regularization.
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(c) The residual graphs with
weighted regularization.
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(d) The error graphs with
weighted regularization.

Figure 1: Residual and error graphs for the well test case with different regularizations.

4.3 Test Case: Pyramid

In the last test case A ∈ IR1155×1240 has full row-rank (rankA = 1115) and
thus ATA is again rank deficient. The smallest nonzero singular value σr of A
was determined to be approximately 0.1202. Thus the parameter s was chosen
to be 0.0016, 0.0145 and 0.1301 for f equal to 0.1, 0.5 and 0.9 respectively.
For the weighted case σr ≈ 0.0628 of AD−1 and s therefore 4.3839 · 10−4,
0.0039 and 0.0355. The (weighted) norms of the solutions were 0.6758 in the
unweighted case and 0.8973 in the weighted case. Figure 3 shows residual and
error graphs for the tests.

Final comments. The advantage of the iterative algorithm that we pro-
posed in the paper is that it directly computes a weighted minimal norm
solution with an symmetric and positive definite weights matrix, and does not
require prior transformation of the weighted least squares problem into an un-
weighted one.
We will work on a proper computational comparison in future work.

Acknowledgements. We would like to thanks to the anonymous referees
for their valuable comments that improved the initial version of the paper.
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(a) The residual graphs with
unweighted regularization.
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(b) The error graphs with un-
weighted regularization.
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(c) The residual graphs with
weighted regularization.
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(d) The error graphs with
weighted regularization.

Figure 2: Residual and error graphs for the mobile test case with different regularizations.
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(b) The error graphs with un-
weighted regularization.

0 20 40 60 80 100
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration #

R
el

at
iv

e 
R

es
id

ua
l N

or
m

 

 
f = 0.1
f = 0.5
f = 0.9

(c) The residual graphs with
weighted regularization.
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Figure 3: Residual and error graphs for the pyramid test case with different regularizations.
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